Differential Importance of Glucose-Dependent Insulino tropic Polypeptide vs Glucagon-Like Peptide 1 Receptor Signaling for Beta Cell Survival in Mice

ADRIANO MAIDA,* TANYA HANSOTIA,* CHRISTINE LONGUET,* YUTAKA SEINO,‡ and DANIEL J. DRUCKER*

*Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and ‡Kyoto University Graduate School of Medicine, Kyoto, Japan

See editorial on page 1891.

BACKGROUND & AIMS: Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulino tropic polypeptide (GIP) activate pathways involved in beta cell survival and proliferation in vitro; we compared the relative importance of exogenous and endogenous GIP receptor (GIPR) and GLP-1 receptor (GLP-1R) activation for beta cell cytoprotection in mice. METHODS: The effects of incretin hormone receptor signaling on beta cell regeneration and survival were assessed in mice following administration of streptozotocin in the absence or presence of the GIPR agonist [D-Ala²]-GIP (D-GIP), the GLP-1R agonist exendin-4, or the dipeptidyl peptidase-4 inhibitor sitagliptin. Beta cell survival was assessed in Gipr⁻/⁻ mice given streptozotocin and by gene expression profiling of RNA from islets isolated from Glp1r⁻/⁻ and Gipr⁻/⁻ mice. The antiapoptotic actions of sitagliptin were assessed in wild-type and dual incretin receptor knockout (DIRKO) mice.

RESULTS: Administration of exendin-4 for 7 or 60 days improved blood glucose and insulin levels, reduced islet cell apoptosis, and increased pancreatic insulin content and beta cell mass. In contrast, D-GIP was less effective at improving these parameters under identical experimental conditions. Furthermore, Gipr⁻/⁻ mice did not exhibit increased sensitivity to streptozotocin-induced diabetes. Sitagliptin reduced hemoglobin A₁c levels and increased pancreatic insulin content and glucose intolerance or experimental diabetes.10,11

CONCLUSIONS: There are functionally important differences in the pharmacologic and physiologic roles of incretin receptors in beta cells. GLP-1R signaling exerts more robust control of beta cell survival, relative to GIPR activation or dipeptidyl peptidase-4 inhibition in mice in vivo.

The gastrointestinal tract plays a critical role in the sensing, absorption, and disposal of ingested nutrients via multiple relay mechanisms that involve neural communication as well as complex endocrine systems converging on target organs regulating glucose homeostasis. A classic role for gut endocrine cells in the facilitation of nutrient disposal is illustrated by the incretin effect, the augmentation of insulin secretion that occurs following enteral nutrient ingestion. Two principal gut hormones account for the majority of the incretin effect: glucose-dependent insulino tropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1).

GIP and GLP-1 exert their actions through structurally related G protein-coupled receptors, which exhibit considerable amino acid homology and utilize overlapping signal transduction pathways in islet beta cells. Although GIP and GLP-1 both stimulate glucose-dependent insulin secretion, they exert different activities beyond the beta cell. GIP promotes lipid accretion and resistin secretion from adipocytes, leading to progressive impairment of insulin action following long-term GIP administration in rodents fed a high-fat diet. Conversely, transient or genetic elimination of GIP action in rodents leads to reduced fat accumulation, resistance to diet-induced obesity, and preservation of insulin sensitivity.

In contrast, GLP-1, but not GIP, inhibits glucagon secretion and reduces the rate of gastric emptying. Moreover, GLP-1 induces satiety, and sustained GLP-1 receptor (GLP-1R) activation is associated with weight loss in both preclinical and clinical studies. GLP-1 enhances glucose competence and promotes restoration of glucose sensing in diabetic beta cells. Moreover, GLP-1 stimulates beta cell replication, leading to expansion of beta cell mass in rodents with glucose intolerance or experimental diabetes. GLP-1 also enhances cell survival in beta cell lines, isolated rodent and human islets, and models of beta cell apoptosis.

Abbreviations used in this paper: AUC, area under the curve; D-GIP, [D-Ala²] glucose-dependent insulino tropic polypeptide; DIRKO, dual incretin receptor knockout; DPP-4, dipeptidyl peptidase-4; EGFR, epidermal growth factor receptor; Ex-4, exendin-4; GIP, glucose-dependent insulino tropic polypeptide; GIPR, glucagon-dependent insulino tropic polypeptide receptor; GLP-1, glucagon-like peptide 1; GLP-1R, glucagon-like peptide 1 receptor; PARP, poly(adenosine diphosphate ribose) polymerase; S-GLP-1, [Ser8] GLP-1(7-36)NH₂; STZ, streptozotocin.

© 2009 by the AGA Institute
0016-5085/09/$36.00
doi:10.1053/j.gastro.2009.09.004
Conversely, elimination of GLP-1R signaling leads to a reduced number of large islets and enhanced susceptibility to beta cell apoptosis in mice.12–15 GIP also promotes beta cell proliferation and inhibits apoptosis in islet cell lines and diabetic rodents.17–19 In contrast to the importance of endogenous GLP-1R signaling for beta cell proliferation and survival,15,16 whether the GIP receptor (GIPR) is similarly important for maintenance of beta cell mass remains unclear. Unexpectedly, genetic disruption of the GIPR gene in mice was associated with increased20 or normal3 islet size, findings inconsistent with an essential role for GIP in the control of beta cell growth or survival. We have now compared the efficacy of pharmacologic activation of single incretin receptors using GLP-1R and GIP agonists versus activation of incretin receptors using the dipeptidylpeptidase-4 (DPP-4) inhibitor sitagliptin to promote beta cell survival in mice. In complementary experiments, we assessed the importance of the endogenous GIPR for beta cell survival in studies using \textit{Gipr}−/− mice. Our studies illuminate differences in the biology of incretin receptor signaling for beta cell survival in murine islets.

\section*{Materials and Methods}

\subsection*{Peptides and Reagents}

Peptides were reconstituted in phosphate-buffered saline (PBS), aliquoted, and stored at \textcircled{−}\textsubscript{80}C. Exendin-4 (Ex-4; purity, 99.9%; peptide content, 82%), [D-Ala2]GIP (D-GIP; purity, 99.6%; peptide content, 79%), and native human GIP (purity, 99%; peptide content, 77%) were from California Peptide Research Inc (Napa, CA). [Ser6]GLP-1(7-36)NH\textsubscript{2} (S-GLP-1; purity, >95%; peptide content, 81%) and native GLP-1(7-36)NH\textsubscript{2} (purity, >95%; peptide content, 75%) were from Bachem (Torrance, CA). Liraglutide was from Novo Nordisk (Bagsvaerd, Denmark). Peptide doses were corrected for peptide purity and content. Tissue culture reagents were from Invitrogen (San Diego, CA) and streptozotocin (STZ), collagenase V, Hank’s balanced salt solution and Histopaque, TRI reagent, and formalin and bovine serum albumin were from Sigma (St Louis, MO). Rabbit anti-IRS2 antiserum was from Upstate (Lake Placid, NY), rabbit anti-epidermal growth factor receptor (EGFR) was from Rockland (Gilbertsville, PA), and mouse anti-Hsp90 was from BD Transduction Labs (San Jose, CA). Horseradish peroxidase–conjugated anti-mouse and anti-rabbit secondary antibodies were both from GE Healthcare UK Ltd (Little Chalfont, Buckinghamshire, England).

\subsection*{Animal Experiments}

All animal experiments were performed according to the protocols and procedures outlined by the Toronto General and Mount Sinai Hospital Animal Care Committees. Mice were housed (3–5 per cage) under specific pathogen-free conditions in microisolator cages and maintained on a 12-hour light (7 AM)/dark (7 PM) cycle with free access to food and water unless otherwise noted. Male C57BL/6 mice aged 7–8 weeks (Taconic Farms, Germantown, NY) were allowed to acclimatize for at least 1 week before experimental procedures. Unless otherwise noted, mice were fed a standard rodent diet (LM-485; Harlan Teklad, Madison, WI). Blood glucose level was measured in the morning via a tail vein blood sample, taken before peptide injections, using a blood glucose meter (Bayer, Toronto, Ontario, Canada). Studies in \textit{Gipr}−/−, \textit{Glp1r}−/−, and dual incretin receptor knockout (DIRKO) mice were conducted in mice aged 10–14 weeks on a C57BL/6 genetic background as described.21 Littermates were used in all experiments for comparisons between wild-type and single incretin receptor knockout mice. For STZ studies, mice were fasted for 5 hours (8 AM to 1 PM) before STZ injection (50 mg·kg−1·day−1) or vehicle (0.1 mol/L sodium citrate, pH 5) for 5 consecutive days as described.15 C57BL/6 mice were randomized to receive 24 nmol/kg Ex-4, 24 nmol/kg D-GIP, or PBS twice daily at approximately 8 AM and 6 PM by intraperitoneal injection. The doses of D-GIP and Ex-4 were chosen based on previous studies in STZ-treated mice15,22 and on dose-response experiments (Supplementary Figure 1C) demonstrating comparable efficacy of specific peptide doses in reducing blood glucose levels. In experiments conducted using S-GLP-1 and liraglutide, twice-daily doses of 24 nmol/kg and 100 µg/kg (27 nmol/kg) were used, respectively. Control nondiabetic mice received injections of the appropriate saline vehicle. In studies involving sitagliptin, C57BL/6 mice were fed a control diet containing 10% kcal fat (D12450B; Research Diets, New Brunswick, NJ) during acclimatization, following which mice were randomized to receive the same diet with or without sitagliptin for 1 week before the onset of and during STZ administration. In treatment A, mice on the sitagliptin diet were returned to control diet 3 days after the end of STZ injections to determine the effect of transient DPP-4 inhibition on STZ-induced diabetes. In treatment B, mice were kept on the sitagliptin-containing diet for an additional 55 days after STZ administration. Sitagliptin, supplied by Merck Research Laboratories (Rahway, NJ), was incorporated at a concentration of 4 g drug per kilogram diet. This concentration of drug produced \textasciitilde90% inhibition of plasma DPP-4 activity in both normal mice and STZ diabetic mice.

\subsection*{Glucose Tolerance Testing}

Mice were fasted for 15 hours (6 PM to 9 AM) with free access to water before glucose loading (1 g/kg for diabetic mice or 1.5 g/kg for normal mice) for the intraperitoneal or oral glucose tolerance tests. Blood samples for glucose determinations were drawn from the tail vein.
at –15 (15 minutes before glucose loading), 0, 10, 20, 30, 60, and 120 minutes following glucose administration.

Experimental End Points

Islet apoptosis and pancreatic gene expression was measured in pancreases from cohorts of mice killed ~24 hours after the last STZ injection. In mice killed several weeks following the termination of STZ injections, glycated hemoglobin level was measured in a 5-μL blood sample collected from the tail vein using the Bayer DCA 2000+ Analyzer. Cardiac blood was collected and mixed with 10% (vol/vol) solution of 5000 KIU/mL aprotinin and 1.2 mg/mL EDTA; plasma was separated by centrifugation at 4°C and stored at –80°C until assayed. The pancreas was rapidly excised, and 5 mm of the splenic tail was immediately homogenized in cold TRI reagent and stored at –80°C until RNA isolation. An adjacent 5-mm fragment was removed and snap frozen in liquid N2 for determination of pancreatic insulin content. The remainder of the pancreas was cut into 8–10 similarly sized pieces, fixed in a 10% neutral buffered formalin solution for 48 hours, and embedded in paraffin. Pancreatic insulin content, plasma insulin levels, and quantification of cleaved caspase-3 immunopositivity were measured as described.3,22,23 For assessment of beta cell mass, pancreas area using the weight of the pancreas before fixation and calculation of the total cross-sectional area of beta cells/total pancreas area using the weight of the pancreas before fixation. Plasma DPP-4 activity was determined using an enzymatic assay.24

Islet Isolation

After the mice were killed using CO2, the pancreas was inflated via the pancreatic duct with collagenase type V (0.7 mg/mL in Hank’s balanced salt solution), excised, and digested at 37°C for 10–15 minutes. The resulting digest was washed twice with cold Hank’s balanced salt solution (containing 0.25% wt/vol bovine serum albumin) and islets were separated using a Histopaque density gradient. The interface-containing islets was removed and washed with Hank’s balanced salt solution plus bovine serum albumin, and the islets were resuspended in Ham’s F-10 containing 2 mmol/L L-glutamine, 10 mmol/L glucose, 50 μmol/L isobutylmethylxanthine, 1% bovine serum albumin, 100 U/mL penicillin, and 100 μg/mL streptomycin. Following 4 hours of incubation at 37°C, islets were hand picked into fresh media, washed twice in PBS, following which islets were either lysed for RNA extraction using the RNEasy Micro Kit (Qiagen, Mississauga, Canada) or for Western blot analysis.

INS-1 832/3 Cell Culture and Insulin Secretion

INS-1 832/3 cells were a kind gift from Dr Christopher Newgard (Duke University, Raleigh, NC). Culture conditions and insulin secretion experiments were conducted as described.23 Insulin secretion per well was corrected for total cellular protein using the bicinchoninic acid protein assay (Pierce, Rockford, IL) and expressed relative to secretion in 3 mmol/L glucose.

Western Blot Analysis

An aliquot of islet lysate was reserved for protein determination using the bicinchoninic acid method, and the remainder was boiled for 5 minutes in sample buffer containing β-mercaptoethanol. Islet protein (10–15 μg) was resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes overnight at 4°C, and blocked in 5% milk in TBS-T for 1 hour before being incubated with primary antibodies overnight according to the manufacturers’ suggested dilutions. After incubation with secondary antibodies, bands were visualized on BioMax film using enhanced chemiluminescence (GE Healthcare, Buckinghamshire, England) and densitometry quantified using Scion Image (Scion Corp, Frederick, MD).

Complementary DNA Synthesis

Following RNA isolation according to the respective manufacturer’s instructions, first-strand complementary DNA was synthesized from total RNA using the SuperScript III reverse transcriptase synthesis system (Invitrogen, Carlsbad, CA) and random hexamers. Real-time polymerase chain reaction was performed with the ABI Prism 7900 Sequence Detection System using TaqMan Gene Expression Assays and TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA). Levels of messenger RNA (mRNA) transcripts were normalized to peptidyl-propyl isomerase A (cyclophilin).

Statistical Analysis

Results are presented as mean ± SEM. Statistical significance was determined using 1-way or 2-way analysis of variance with Bonferroni post hoc tests or t tests (as appropriate) using GraphPad Prism 4.0 (GraphPad Software Inc, La Jolla, CA). Statistical significance was noted when P < .05.

Results

To determine if GIPR activation promotes beta cell survival, we treated C57BL/6 mice with the potent DPP-4–resistant analogue D-GIP25,26 or the GLP-1R agonist Ex-4 as a control before and concomitant with administration of STZ 50 mg·kg⁻¹·day⁻¹ for 5 days, with Ex-4 and D-GIP administration continuing for 55 days after the last dose of STZ (Figure 1A). Consistent
with previous findings, D-GIP and native GIP were equipotent in vitro, as assessed by stimulation of insulin secretion (Supplementary Figure 1A). However, D-GIP displayed superior glucose-lowering effects in an oral glucose tolerance test in vivo (Supplementary Figure 1B). The doses of D-GIP and Ex-4 were chosen based on similar glucose-lowering efficacies in oral glucose tolerance testing (Supplementary Figure 1C).

Treatment with the GLP-1R agonist Ex-4, but not the GIPR agonist D-GIP, significantly reduced the extent of hyperglycemia following administration of STZ (Figure 1B). For glucose tolerance tests, mice received last peptide/PBS injections 16 hours before glucose administration (1 g/kg, denoted by an arrow). *P < .05, **P < .01, ***P < .001 vs PBS-treated STZ group in all cases except in B, where asterisks denote differences between Ex-4- and D-GIP-treated mice.

The results of these studies show that twice-daily administration of a potent GIP analogue for 8 weeks is unable to improve glucose homeostasis or regenerate beta cell mass following STZ administration. Because D-GIP retains its ability to acutely lower blood glucose levels shortly after STZ administration (Supplementary Figure 2), we assessed whether a brief period of D-GIP treatment exerts cytoprotective actions on the murine islet. Wild-type C57BL/6 mice were treated with either Ex-4 or D-GIP before, during, and for 2 days after the administration of STZ, for a total of 13 days. Separate groups of mice were killed for analysis of beta cell apoptosis 24 hours after the final STZ injection or mo
stored for an additional 35 days after the last dose of STZ (Figure 3A). Transient treatment with Ex-4 attenuated the extent of hyperglycemia (AUC for glucose was 493 vs 356 mmol/L per day for PBS vs Ex-4, respectively; *P < .05; Figure 3B) and reduced levels of glycated hemoglobin at day 40 (Figure 3C; 7.1% vs 6.4% for PBS vs Ex-4, respectively; **P < .01). In contrast, twice-daily administration of D-GIP for 13 days did not diminish the extent of hyperglycemia or reduce levels of glycated hemoglobin (Figure 3B and C).

To determine whether a brief period of Ex-4 or D-GIP administration increased pancreatic insulin content or beta cell mass in the context of STZ administration, we assessed these parameters 33 days after the last peptide injection. Mice treated with D-GIP did not exhibit increased beta cell mass or pancreatic insulin content (Figure 3D and E). In contrast, Ex-4–treated mice exhibited significantly increased beta cell mass and pancreatic insulin content more than 4 weeks after cessation of Ex-4 administration (Figure 3D and E).

To delineate mechanisms underlying the differential effects of Ex-4 versus D-GIP on beta cell mass, we assessed beta cell apoptosis immediately following STZ administration. Both Ex-4 and D-GIP significantly reduced levels of cleaved caspase-3 in beta cells (Figure 4A). Moreover, we compared the cytoprotective action of D-GIP with 2 structurally distinct DPP-4–resistant analogues of human GLP-1: S-GLP-1 and liraglutide. Both S-GLP-1 and liraglutide significantly reduced levels of STZ-induced islet apoptosis relative to PBS-treated mice; treatment with D-GIP also reduced beta cell apoptosis, but the difference relative to control was not statistically significant (Figure 4B). Blood glucose monitoring illustrated that mice exposed to S-GLP-1, but not D-GIP, had lower AUC random glucose levels relative to PBS-treated animals (Supplementary Figure 3B).

We next assessed the effects of Ex-4 versus D-GIP on expression of genes important for beta cell function and survival (Supplementary Figure 4). While neither incretin receptor agonist produced broad changes in islet gene expression relative to STZ controls, Ex-4–treated mice exhibited significant reductions in levels of EGFR, epidermal growth factor, and poly(adenosine diphosphate ribose) polymerase (PARP), the latter a key mediator of STZ-induced apoptosis in mice27 (Supplementary Figure 4A–C). In contrast, mice treated with D-GIP exhibited...
higher levels of pancreatic glucagon, insulin receptor, Akt, and PARP mRNA relative to the Ex-4–treated cohort (Supplementary Figure 4A–C).

We next ascertained whether DPP-4 inhibition, which reduces N-terminal degradation of endogenously produced intact GIP and GLP-1, would engage survival or regenerative pathways in murine beta cells. Sitagliptin treatment for 60 days significantly reduced plasma DPP-4 activity by 87%–95% in normal and STZ diabetic mice, respectively (Supplementary Figure 5A). Transient (13 days) or sustained (60 days) sitagliptin administration (Figure 5A) did not modify the extent of hyperglycemia induced by STZ (Figure 5B); however, levels of hemoglobin A1c were significantly lower in mice receiving STZ who were treated with sitagliptin for 60 days (Figure 5C). Moreover, prolonged sitagliptin treatment was associated with significantly higher levels of fed plasma insulin (Figure 5D) and pancreatic insulin content (Figure 5E). While beta cell mass tended to be higher (Figure 5F), the percentage of beta cell area was significantly increased in sitagliptin-treated mice (0.12% ± 0.01% vs 0.20% ± 0.03%, *P < .05, vehicle vs sitagliptin, respectively). The effect of sitagliptin on beta cell mass versus beta cell area could partially be explained by the slightly lower pancreas weight in sitagliptin-treated animals (259 ± 6 mg vs 219 ± 6 mg; *P < .001 for STZ vs STZ plus sitagliptin, respectively). Interestingly, sitagliptin therapy was associated with significantly lower levels of cleaved caspase-3

Figure 3. Ex-4, but not D-GIP, confers partial protection against STZ-induced diabetes in wild-type mice. (A) C57BL/6 male mice were randomized to one of 4 treatment groups. Control (CON) mice served as a non-diabetic vehicle control group and did not receive STZ; the remaining mice were treated with D-GIP or Ex-4 (each twice daily at 24 nmol/kg per injection) or PBS for 1 week before, during, and 2 days after STZ administration. (B) Random fed blood glucose levels were measured throughout the study, and (C) glycated hemoglobin, (D) beta cell mass, and (E) pancreatic insulin content were assessed in samples taken at day 40 (n = 10–11). (B) **P < .05, ***P < .001 Ex-4 vs D-GIP; (C–E) *P < .05 for Ex-4 vs PBS.
immunopositivity within islets of STZ-treated wild-type mice (Figure 6A). In contrast, sitagliptin failed to reduce levels of cleaved caspase-3 immunopositivity in islets of STZ-treated DIRKO mice which harbor genetic inactivation of both incretin receptors (Figure 6B).

Analysis of pancreatic gene expression profiles in mice killed at day 6, 24 hours following the final STZ injection, showed that sitagliptin treatment was associated with increased levels of mRNA transcripts for Pdx-1 and the insulin receptor (Supplementary Figure 5B–D) and reduced levels of glucokinase. Furthermore, sitagliptin increased pancreatic mRNA levels for IGF-1 and Akt-1 (Supplementary Figure 5B–D), genes important for beta cell mass, and pancreatic insulin content were reduced to similar levels in Gipr−/− mice versus Glp1r−/− mice (Figure 7A and B). Moreover, fed plasma insulin levels, beta cell mass, and pancreatic insulin content were reduced to similar levels in Gipr−/− versus Glp1r−/− mice after administration of STZ (Figure 7C–E) and levels of activated caspase-3 immunopositivity were similar in islets from STZ-treated Gipr−/− versus Glp1r−/− mice (Figure 7F). To elucidate mechanisms underlying the differential sensitivity of Gipr−/− versus Glp1r−/− beta cells to STZ, we analyzed basal levels of mRNA transcripts in islets from wild-type, Glp1r−/−, and Gipr−/− mice. No differences were detected in the levels of mRNAs encoding the insulin receptor, insulin-like growth factor receptors 1 and 2, Akt, Bel- xl, Bel-2, Pdx-1, GLUT2, PARP, SOD, Socs-3, nuclear factor κB, and Creb in littermate wild-type, Gipr−/−, and Glp1r−/− islets (Supplementary Figure 6). In contrast, levels of mRNA transcripts and protein for Irs-2 and Egfr were significantly reduced in Glp1r−/− relative to Gipr−/− islets (Figure 8A–C).

![Figure 4. Incretin receptor agonists reduce apoptosis in STZ-treated mice. (A, top) Male C57BL/6 mice were treated with either D-GIP or Ex-4 (24 nmol/kg per injection) or PBS twice daily for 7 days before and during 5 consecutive days of STZ administration. (A, bottom) Cleaved caspase-3 positivity within insulin-positive islets was assessed in mice killed on day 6, ~24 hours after the final STZ injection. (B, top and bottom) In a separate cohort of mice, the efficacy of D-GIP in STZ-induced apoptosis was compared with S-GLP-1 (given twice daily at 24 nmol/kg) and liraglutide (Lira, given twice daily at 27 nmol/kg) or PBS. Control nondiabetic mice received injections of the appropriate saline vehicle. Approximately 100 islets per mouse were analyzed (n = 7–8 mice); *P < .05, **P < .001 vs PBS-treated mice.](image-url)

Discussion

The incretin hormones GIP and GLP-1 enhance glucose-stimulated insulin secretion in non-diabetic animals and human subjects. However, in patients with type 2 diabetes mellitus, the insulinotropic activities of GIP, and to a lesser extent GLP-1, are diminished, with the GIP defect most noticeable during the late-phase insulin response. In contrast, much less is known about the comparative cytoprotective and regenerative actions of GIP and GLP-1, because few experiments have directly compared the ability of these incretins to protect or regenerate beta cells in head-to-head studies. Our experiments using degradation-resistant incretin receptor agonists clearly show that sustained administration of the GLP-1R agonist Ex-4 produces more robust reductions in levels of glycemia, in association with increased levels of plasma insulin, pancreatic insulin content, and beta cell mass. Moreover, although both Ex-4 and D-GIP reduced apoptosis in murine islets immediately after STZ administration, transient administration of Ex-4, but not D-GIP, resulted in lower blood glucose levels and increased insulin content and beta cell mass more than 4 weeks after cessation of incretin therapy (Figure 3).

Treatment with D-GIP tended to increase beta cell mass; in contrast to the effects of Ex-4, D-GIP did not improve plasma or pancreatic insulin levels or glucose tolerance (Figures 1 and 2). Because the doses of Ex-4 and D-GIP used in our experiments were equipotent in glucose reduction at the start of our studies, these findings imply that activation of the GLP-1 receptor using Ex-4 leads to more robust cytoprotection and enhancement of beta cell mass than that seen following activation of the cognate GIPR using D-GIP. Notably, D-GIP administration did reduce levels of islet apoptosis and tended to increase beta cell mass; hence, GIPR activation is able to couple to proliferative and antiapoptotic pathways in diabetic murine beta cells.

It is important to consider several aspects of the experimental design and choice of reagents that influence interpretation of our data. First, Ex-4 and D-GIP, while producing comparable degrees of acute glucose regulation, may exhibit different pharmacokinetic properties following sustained administration, leading to differential activation of the GLP-1 versus GIP receptors, respectively.
Hence, an ideal assessment of the pharmacologic consequences of sustained incretin receptor activation would utilize equipotent GIP and GLP-1R agonists that produce identical pharmacokinetic profiles. It remains possible that more potent GIP analogues would be associated with enhanced proliferative and antiapoptotic actions on islet beta cells in vivo. Moreover, recent reports indicate that the capacity of beta cells to proliferate in response to partial pancreatectomy, STZ, or Ex-4 declines sharply after adolescence in mice.13,14 Because our experiments were conducted in young adult mice (8–14 weeks of age), whether the antiapoptotic actions of GLP-1R or GIPR agonists or DPP-4 inhibitors are also influenced by aging or the duration of diabetes is an important question that merits further exploration.

The finding by many groups that GLP-1 receptor activation leads to beta cell cytoprotection8 is consistent with data that Glp1r−/− mice exhibit increased beta cell apoptosis following STZ administration.15 In contrast, our data show that unlike Glp1r−/− mice, Gipr−/− mice do not exhibit increased susceptibility to beta cell apoptosis following STZ administration. These findings were unexpected given that numerous reports have shown antiapoptotic actions of GIP both in vitro and in vivo.16,33,34 Potential explanations for these findings include differences in genetic background or a compensatory increase in GLP-1 responsivity, as described in previous studies of Gipr−/− mice,20 that might produce enhanced beta cell protection in Gipr−/− mice. Surprisingly, however, although Glp1r−/− mice exhibit a compensatory increase in

Figure 5. DPP-4 inhibition with sitagliptin improves parameters of beta cell function in STZ-treated wild-type mice. (A) In sitagliptin treatment A, mice on the sitagliptin diet were returned to control diet 3 days following the end of STZ injections. In treatment B, mice were kept on the sitagliptin-containing diet through to the experimental end point at day 60. (B) Random fed blood glucose levels were measured in the morning throughout the study. At day 60, samples were taken for measurement of (C) glycated hemoglobin, (D) fed plasma insulin, (E) pancreatic insulin content, and (F) beta cell mass. n = 8–18; **P < .01 vs STZ-treated controls.
Although levels of RNA transcripts for the majority of cytoprotective molecules and components of the apoptotic machinery were similar in Gipr−/− versus Glp1r−/− islets, levels of the EGFR and Irs-2 were significantly lower in Glp1r−/− islets (Figure 8A–C). These findings may partially explain the enhanced apoptotic susceptibility to apoptosis and extend previous observations showing that GLP-1 may exert its actions on the islet beta cell in part through EGFR transactivation.34,36,37 Moreover, Irs-2 has been shown to be critical for the cytoprotective and regenerative effects of Ex-4,38 and we recently showed that Ex-4, but not D-GIP, increased levels of pancreatic mRNA transcripts for EGFR and Irs-2 in nondiabetic mice fed a high-fat diet.22 Taken together, our findings in STZ-treated mice imply that the structurally related GLP-1 and GIP receptors exhibit significant differences in their ability to engage downstream molecules important for beta cell survival and regeneration.

Because DPP-4 inhibitors (sitagliptin and vildagliptin) and GLP-1R agonists (Ex-4 and liraglutide) are used to treat type 2 diabetes mellitus, there is active interest in understanding whether these agents regulate beta cell protection and/or regeneration. Considerable data show antiapoptotic and proliferative actions of GLP-1R agonists8,39; however, there is less information on cytoprotective or regenerative properties of DPP-4 inhibitors.22,40–44 Although random fed glycemia was not improved by sitagliptin in STZ-
treated mice, circulating levels of glycated hemoglobin were reduced and pancreatic insulin content and beta cell area and pancreatic IGF-1 and Akt mRNA transcripts were increased following sitagliptin administration. Hence, even modest increases in levels of intact incretin hormones may enhance beta cell survival in mice. Moreover, sitagliptin reduced the extent of caspase-3 activation following STZ administration in wild-type but not in DIRKO mice, showing that incretin receptors are essential transducers of the antiapoptotic actions of DPP-4 inhibitors.

In summary, our studies provide new information on the importance of basal GIPR action for beta cell survival and on how different mechanisms for enhancing incretin receptor activation impact beta cell regeneration in mice. Moreover, unlike the importance of the GLP-1 receptor for beta cell function, elimination of endogenous GIPR signaling does not modify susceptibility to beta cell injury and is not associated with perturbation in levels of key signaling molecules important for beta cell growth and survival. These findings extend our understanding of the relative importance and mechanisms of incretin action for beta cell survival and may have implications for strategies designed to optimize beta cell growth or survival in patients with type 2 diabetes mellitus.

Supplementary Data

Note: To access the supplementary material accompanying this article visit the online version of Gastroenterology at www.gastrojournal.org, and at doi: 10.1053/j.gastro.2009.09.004.

References

Pharmaceuticals, Arena Pharmaceuticals Inc, Arisaph Pharmaceuticals Inc, Eli Lilly and Company, GlaxoSmithKline, Glenmark Pharmaceuticals, Hoffman-LaRoche Inc, Isis Pharmaceuticals Inc, Merck Research Laboratories, Metabolex Inc, Novartis Pharmaceuticals, Novo Nordisk Inc, Phenomix Inc, and Transition Pharmaceuticals Inc. Neither Dr Drucker nor his family members hold stock directly or indirectly in any of these companies. The remaining authors disclose no conflicts.

Funding
A.M. was supported by funding from a Canadian Diabetes Association Doctoral Research Award and a Canadian Institutes of Health Research graduate scholarship. These studies were supported in part by a grant from the Juvenile Diabetes Research Foundation (JDRF #1-2006-796) and from the Canadian Institutes of Health Research MOP 82700. D.J.D. was supported in part by the Canada Research Chairs Program.