The Glucagon-Like Peptide-1 Receptor Agonist Oxyntomodulin Enhances β-Cell Function but Does Not Inhibit Gastric Emptying in Mice

Adriano Maida, Julie A. Lovshin, Laurie L. Baggio, and Daniel J. Drucker

Mt. Sinai Hospital, Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1X5

The proglucagon gene gives rise to multiple peptides that play diverse roles in the control of energy intake, gut motility, and nutrient disposal. Glucagon-like peptide-1 (GLP-1), a 30-amino-acid peptide regulates glucose homeostasis via control of insulin and glucagon secretion and by inhibition of gastric emptying and food intake. Oxyntomodulin (OXM) a 37-amino-acid peptide also derived from the proglucagon gene, binds to both the glucagon and GLP-1 receptor (GLP-1R); however, a separate OXM receptor has not yet been identified. Here we show that OXM, like other GLP-1R agonists, stimulates cAMP formation and lowers blood glucose after both oral and ip glucose administration, actions that require a functional GLP-1R. OXM also directly stimulates insulin secretion from murine islets and INS-1 cells in a glucose- and GLP-1R-dependent manner. Moreover, OXM ameliorates hyperglycemia and significantly reduces apoptosis in murine β-cells after streptozotocin administration and directly reduces apoptosis in thapsigargin-treated INS-1 cells. Unexpectedly, OXM, but not the GLP-1R agonist exendin-4, increased plasma levels of insulin after oral glucose administration. Moreover, OXM administered at doses that potently lower blood glucose had no effect on inhibition of gastric emptying but reduced food intake in WT mice. Taken together, these findings illustrate that although structurally distinctive proglucagon-derived peptides such as GLP-1 and OXM engage the GLP-1R, OXM mimics some but not all of the actions of GLP-1R agonists in vivo. These findings may have implications for therapeutic efforts using OXM as a long-acting GLP-1R agonist for the treatment of metabolic disorders. (Endocrinology 149: 5670–5678, 2008)}
also capable of stimulating insulin, somatostatin, and glucagon secretion from the endocrine pancreas (11–13). OXM enhanced glucose clearance via stimulation of insulin secretion but had no independent effect on insulin action in mice (13). Moreover, iv administration of OXM also potently increased intestinal glucose uptake in the rat (14). Nevertheless, the specific molecular mechanisms mediating these diverse actions of OXM remained poorly understood.

OXM also regulates the control of food intake. Both central and peripheral administration of OXM produced satiety and weight loss in rodents (15–18), and subsequent studies demonstrated that OXM inhibits food intake and increases energy expenditure, leading to weight loss in human subjects (19). Although OXM interacts with both the glucagon and GLP-1 receptors (GLP-1R), experiments using the GLP-1R antagonist exendin9–39 (Ex-9) and Glp1r−/− mice have demonstrated that the anorectic effect of OXM is mediated through the GLP-1R (17, 18). Remarkably, however, there is little information about whether OXM also exhibits GLP-1R-dependent actions important for control of glucoregulation. Accordingly, we have now examined whether OXM exerts a spectrum of glucoregulatory actions that require a functional GLP-1R.

Materials and Methods

Peptides and reagents

All peptides were reconstituted in either PBS or sterile water, aliquoted, and stored at −80 °C. Exendin-4 (Ex-4) and Ex-9 were purchased from California Peptide Research Inc. (Napa, CA). OXM was purchased from Bachem (Torrance, CA) and Pepceuticals (Nottingham, UK). Tissue culture medium, fetal bovine serum (FBS), and G418 were purchased from Invitrogen (San Diego, CA). Acetaminophen (paracetamol), forskolin (FSK), 3-isobutyl-1-methylxanthine, thapsigargin (Tg), streptozotocin (STZ), collagenase V, Hanks’ balanced salt solution (HBSS), and Histopaque were from Sigma Chemical Co. (St. Louis, MO).

Animal experiments

All animal experiments were carried out with strict adherence to the protocols and procedures outlined by the Toronto General Hospital and Mt. Sinai Hospital Animal Care Committees. Wild-type mice (C57BL/6) were purchased from Charles River Laboratories (Montreal, Quebec, Canada). Mice were allowed to acclimatize to the animal housing facilities at the Toronto General Hospital at least 1 wk before experimentation. After acclimatization, animals were handled daily and sham-injected with PBS once daily to further acclimatize the animals to experimental protocol. Glp1r−/− male mice on a C57BL/6 genetic background were used for these studies (20). All mice were 10–14 wk of age at the commencement of experiments and were maintained on a 12-h light, 12-h dark cycle and allowed ad libitum access to water and standard rodent chow, with exceptions as noted in the experimental protocols.

Oral and ip glucose tolerance tests and plasma insulin levels

Mice were fasted overnight and weighed, and blood glucose levels were measured by tail vein sampling using a handheld glucometer (Glucometer Elite Blood Glucose Meter; Bayer Inc., Toronto, Ontario, Canada). Mice were injected (ip) with PBS, Ex-4, or OXM (at various doses), and glucose was administered 5 min later (1.5 g/kg body weight) either via oral gavage [oral glucose tolerance test (OGTT)] or by ip injection [ip glucose tolerance test (IPGTT)]. Blood glucose levels were measured by tail vein sampling at 10, 20, 30, 60, 90, and 120 min after glucose administration. At the 10-min time point, a larger blood sample (100 μl) was collected from the tail vein and immediately mixed with 10 μl of a chilled solution containing 5000 kIU/ml Trasylol (Bayer), 32 mM EDTA, and 0.01 mM Diprotin A (Sigma Chemical Co., St. Louis, MO) and kept on ice. Plasma was obtained by centrifugation at 4 °C and stored at −80 °C until determination of plasma insulin levels using LINCoPlex multiplex ELISA (Millipore, Billerica, MA) as described (20). To obtain detailed profiles of glucose-stimulated insulin secretion by OXM and Ex-4, a separate experiment was performed where C57BL/6 male mice were injected (ip) with peptides/PBS 5 min before glucose administration (1.5 g/kg ip) and 50 μl blood aliquots collected from the tail vein into heparinized Microvette tubes (Sarstedt, Germany) at 0, 2, 5, 10, and 80 min after glucose administration. Plasma was separated as above and plasma insulin levels measured using an ultrasensitive mouse insulin ELISA (Alpco Diagnostics, Salem, NH).

Food intake studies

Mice were fasted in individual cages overnight (16 h) before food intake studies. Mice were weighed and injected with Ex-4 (1 μg), OXM (250 μg), or PBS. Mice were allowed ad libitum access to a premeasured amount of standard rodent chow with free access to water. Food intake was then measured at 1, 2, 4, 6, and 24 h.

Gastric emptying studies

Gastric emptying rate was assessed using two protocols. To measure solid-phase gastric emptying, mice were fasted in individual cages overnight (16 h) and then allowed ad libitum access to a premeasured amount of rodent chow for 1 h. Food intake was determined by reweighing the rodent chow after 1 h of feeding. Mice were injected with PBS, Ex-4 (3 μg), or OXM (10, 100, or 250 μg), deprived of food for 4 h, and then euthanized by Somnotol (sodium pentobarbital solution; MTC Pharmaceuticals, Cambridge, Ontario, Canada) injection followed by cervical dislocation. The stomach was isolated and gastric contents retrieved and weighed. The gastric emptying rate was determined using the following formula: gastric emptying rate (percent) = [(stomach content weight [food intake]) × 100]/[(stomach content weight [food intake]) × 100] as described (21). In the second protocol, liquid-phase gastric emptying was assessed using the paracetamol absorption test. This test is based on the principle that paracetamol absorption occurs completely in the small intestine, with negligible absorption in the stomach (22), and therefore the rate of gastric emptying is directly related to the appearance of paracetamol in the blood. Mice were fasted for 6 h beginning at 0700 h on the day of the experiment. Mice were injected with PBS, high-dose OXM (250 μg), or Ex-4 (1 μg) 10 min before (t = −10 min) oral administration of a solution containing paracetamol at a dose of 100 mg/kg. Tail vein blood (50 μl) was collected into heparinized tubes at 15, 30, and 60 min after paracetamol administration. Plasma was separated by centrifugation at 4 °C and stored at −20 °C until measurement of paracetamol levels using an enzymatic-spectrophotometric assay (Diagnostic Chemicals Ltd., Oxford, CT).

STZ studies

After a 5-h fast (0800–1300 h), C57BL/6 mice were injected with STZ at a dose of 40 mg/kg/d for 5 consecutive days as previously described (23). Nondiabetic control mice were injected with vehicle (0.1 M sodium citrate, pH 5). For testing the effect of OXM on STZ-induced diabetes, OXM (50 μg) or PBS was administered twice daily (0900 and 1800 h) commencing 4 d before STZ and continued for 4 d after STZ injections ceased. Control nondiabetic mice were administered vehicle only. This dose of OXM was chosen based on preliminary dose-response experiments demonstrating its efficacy in reducing blood glucose and stimulating insulin secretion in an OGTT. Random-fed blood glucose was measured via a tail vein blood sample at 1000 h every 2–3 d. Approximately 35 d after the last STZ injection, levels of blood glycosylated hemoglobin (HbA1c) were determined using the DCA2000+ Analyzer (Bayer) using a volume of blood (5 μl) taken from the tail vein. Mice were killed by CO2 asphyxiation, and a portion of the pancreas was removed for analysis of pancreatic insulin content. Because treatment with Ex-4 has been previously shown to reduce STZ-induced islet apoptosis (23), a separate cohort of C57BL/6 mice was randomized to receive twice-daily PBS, OXM (50 μg), or Ex-4 (2.3 μg) according to the STZ protocol above. These mice were killed by CO2 asphyxiation within about 24 h after the last STZ injection, and their pancreata were removed, cut into approximately 10 pieces, fixed in neutral-buffered formalin for 48 h, and embedded in paraffin for histological analyses of apoptosis.
Immunostaining and quantification of islet cleaved caspase-3 in pancreas sections

Paraffin blocks were cut to obtain serial sections for insulin and cleaved caspase-3 staining, respectively, according to the following conditions. Insulin immunostaining was carried out using rabbit anti-insulin (1:50 dilution; Dako, Glostrup, Denmark) as primary antibody and biotinylated goat anti-rabbit (1:200 dilution; Vector Laboratories, Burlingame, CA) as secondary antibody. The sections were then incubated with horseradish peroxidase-conjugated Ultra Strepavidin (ID Labs Inc., London, Ontario, Canada) for 30 min, and color was developed with freshly prepared 3,3’-diaminobenzidine tetrahydrochloride (Dako) solution. For detection of cleaved caspase-3, sections were microwave pretreated in citrate buffer (pH 6) followed by overnight incubation with rabbit anti-cleaved caspase-3 (1:600 dilution; Cell Signaling Technology Inc., Danvers, MA) primary antibody. After secondary antibody treatment (as above), color development was achieved with freshly prepared NovaRed solution (Vector). Serial sections for insulin and cleaved caspase-3 were scanned using the Scanscope Imagescope system (Aperio Technologies, Vista, CA) at ≥20 magnification (24). The digital images were analyzed with Scanscope software (Aperio Technologies), using the insulin-stained slides to locate and select islets on the serial section stained for cleaved caspase-3. The number of red pixels (indicative of cleaved caspase-3) within circled islets were summed using an optimized positive pixel count algorithm and normalized per total islet area (square millimeters) analyzed per mouse. Approximately 90 islets from each mouse pancreas were analyzed.

Pancreatic insulin content

Frozen pancreas fragments were homogenized for 30 sec in ice-cold acid-ethanol solution (0.18 M HCl, 70% ethanol). After overnight incubation at 4C, homogenates were centrifuged at 1600 × g for 15 min. The supernatant was collected and stored at −20 C. The pellet was homogenized once more in acid-ethanol, incubated for 2 h at 4 C, centrifuged as above and the supernatant collected. Insulin was determined in these extracts using the rat insulin RIA kit (Linco Research, St. Charles, MO) and normalized to protein content, as assessed by the Bradford protein assay (Hercules, CA).

Islet cell isolation and measurement of insulin secretion

After CO2 euthanasia, pancreata from 14-wk-old male C57BL/6 mice were collected at 1600 × g for 15 min. The supernatant was collected and stored at −20 C. The pellet was homogenized once more in acid-ethanol, incubated for 2 h at 4 C, centrifuged as above and the supernatant collected. Insulin was determined in these extracts using the rat insulin RIA kit (Linco Research, St. Charles, MO) and normalized to protein content, as assessed by the Bradford protein assay (Hercules, CA).

Analysis of cAMP

Baby hamster kidney (BHK) cells stably transfected with the rat GLP-1R (18) were propagated in DMEM supplemented with 5% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.05 mg/ml G418. For analysis of cAMP production, cells were grown to 80% confluency in 24-well plates in the absence of G418. Cells were rinsed with PBS and then incubated in fresh medium containing 100 μM 3-isobutyl-1-methylxanthine and PBS, OXM, or Ex-4 at 37 C for 10 min. Reactions were terminated by the addition ice-cold absolute ethanol, and cell extracts were collected and stored at −80 C until measurement of cAMP using a cAMP RIA kit (Biomedical Technologies, Stoughton, MA) (18).

INS-1 cells and insulin secretion/apoptosis assays

INS-1 832/3 cells were a kind gift from Dr. Christopher Newgard (Duke University, Raleigh, NC) and cultured as described (25) in RPMI medium containing 11.1 mM glucose supplemented with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 10 mM/liter HEPES, 2 mM glutamine, 1 mM sodium pyruvate, and 50 μM β-mercaptoethanol. For insulin secretion experiments, cells were seeded in 24-well plates at a density of 500,000 cells per well and grown to confluence. Growth medium was replaced with RPMI containing 5 mM glucose (along with above indicated supplements) for approximately 16 h before insulin secretion assay. Insulin secretion was carried out as described (25). Briefly, cells were rinsed once in HEPES balanced salt solution (HEBSS) containing 3 mM glucose and subsequently preincubated for 2 h at 37 C in the same medium. Cells were then treated with HEBSS containing 3 mM glucose or 15 mM glucose with or without peptides at the indicated concentrations and incubated at 37 C for an additional 2 h. Secreted insulin levels were quantified by RIA (Linco) and corrected for cellular protein content as measured using the Bradford protein assay (Bio-Rad) with BSA as a standard. For apoptosis assays, cells were seeded in 24-well plates at 200,000 cells per well approximately 48 h before assay. For the last 16 h of this period, the medium was changed to serum-free RPMI containing 3 mM glucose, 0.1% BSA, and routine concentrations of other medium supplements. On the day of the experiment, the latter medium was used to treat cells with OXM, Ex-4, OXM plus Ex-9, or PSK with or without Tg and incubated at 37 C for 6 h. PSK- and Tg-stocks were prepared in dimethylsulfoxide, and final concentrations of this vehicle were equal in all treatment groups. Apoptosis in cells was quantified using the Cell Death ELISAPLUS (Roche, Indianapolis, IN), which quantifies levels of cytoplasmic nucleosomes, a late marker of apoptosis. Absorbance was measured at 405 nm with 492 nm as a reference, and values are expressed relative to control (untreated) cells.

Statistical analysis

All data are presented as means ± SEM. Statistical significance was determined by unpaired t tests or one- or two-way ANOVA and Bonferroni’s or Dunnnet’s post hoc test as applicable. All statistical analysis was performed using GraphPad Prism version 4.02 software (GraphPad Software Inc., San Diego, CA). A P value <0.05 indicated a statistically significant difference.

Results

OGTT and IPGTT studies

To study the effect of OXM on glycemic excursion, we administered glucose either by the oral or ip route, with or without concomitant administration of OXM (1–50 μg) to wild-type mice. OXM dose-dependently reduced glycemic excursion after oral glucose challenge (Fig. 1, A and B), with the 10- and 50-μg doses reducing glucose to levels comparable to those achieved with a much lower dose of Ex-4 (100 ng). Analysis of plasma insulin levels 10 min after oral glucose administration demonstrated a significant increase in circulating insulin levels with doses of OXM (10 and 50 μg) that reduced glycemic excursion. In contrast, Ex-4 did not significantly increase plasma insulin levels during the OGTT, despite marked reduction of glycemic excursion in the same experiment (Fig. 1, A and C). Administration of OXM also reduced glycemic excursion after ip glucose challenge (Fig. 1, D and E).

To explore in more detail the differential insulinotropic response to OXM vs. Ex-4 after glucose challenge in the absence of confounding changes in gastric emptying, we analyzed plasma insulin levels after ip glucose challenge (Fig. 1F). Doses of Ex-4 and OXM that produced similar glucose-lowering efficacies (Fig. 1, D and E) resulted in dif-
different insulin secretion profiles, with OXM stimulating a rapid peak in plasma insulin levels by 2 min, which subsequently dropped but remained significantly elevated after 5 min (Fig. 1F). In contrast, mice administered Ex-4 did not exhibit a robust rise in levels of plasma insulin at 2 min, although insulin levels were significantly higher in mice given Ex-4 compared with mice receiving glucose alone at 5 min (Fig. 1F). To determine whether the glucoregulatory actions of OXM were mediated through the known GLP-1R, we assessed whether OXM administration lowered glucose in Glp1r−/− mice. The ability of OXM to lower glycemic excursion after oral glucose challenge was completely eliminated in Glp1r−/− mice (Fig. 1G).

Insulin secretion studies in murine islets and rat INS-1 β-cells

The available evidence suggests that GLP-1R agonists are capable of increasing insulin secretion through indirect neural pathways (26, 27), and via direct activation of β-cell GLP-1R.
1Rs (26, 28). To determine whether OXM directly stimulates insulin secretion, we isolated islets from wild-type mice and assessed insulin secretion in the presence or absence of OXM or Ex-4. OXM had no effect on insulin secretion at low glucose (2.8 mM) concentrations but robustly stimulated insulin secretion in islets cultured in the presence of 11.1 or 16.7 mM glucose, with both 10- and 100-nM doses of OXM exhibiting similar potencies (Fig. 2A). Furthermore, the insulinotropic actions of OXM were significantly reduced in the presence of the GLP-1R antagonist Ex-9. OXM and Ex-4 also stimulated insulin secretion in glucose-responsive rat INS-1 cells (Fig. 2B), and the OXM-dependent potentiation of glucose-dependent insulin secretion was significantly attenuated in the presence of Ex-9.

β-Cell apoptosis

Considerable experimental evidence demonstrates that activation of GLP-1R signaling promotes resistance to apoptosis resulting in preservation of functional β-cell mass in vivo (23, 29, 30). To determine whether OXM is similarly capable of reducing β-cell apoptosis in an established murine model of β-cell injury, we administered OXM to mice before and during administration of the β-cell toxin STZ according to the protocol depicted in Fig. 3A. Mice receiving OXM and STZ exhibited a 35% reduction in levels of activated caspase-3 within islets relative to STZ-treated mice treated with saline (Fig. 3, B and C). In a second cohort of mice, treatments with saline or OXM were administered before and during STZ as in Fig. 3A but continued for 4 additional days after the final STZ injection and random fed blood glucose levels were measured (Fig. 3D) periodically until d 40. Although random levels of glucose were similar between PBS- and OXM-treated mice, levels of HbA1c (Fig. 3F) were modestly but significantly reduced by OXM administration, and OXM-treated mice had significantly higher levels of pancreatic insulin content (Fig. 3G) detectable 30 days after the last injection of OXM.

To evaluate whether OXM was capable of directly reducing β-cell apoptosis, we assessed apoptosis in INS-1 832/3 cells via measurement of apoptosis-induced release of DNA-containing nucleosomes into the cytoplasmic compartment. Tg, a pharmacological inducer of endoplasmic reticu-
FIG. 3. OXM attenuates STZ-induced islet apoptosis and diabetes in mice. C57BL/6 mice were randomized into four groups as depicted in A: 1) control mice receiving saline treatments throughout (PBS) and sodium citrate buffer (pH 5) (Vehicle or Veh) for 5 d); 2) PBS and STZ, 3) 50 μg OXM twice daily plus STZ, or 4) 2.3 μg Ex-4 twice daily plus STZ. Injection of STZ (40 mg/kg) or vehicle was done once daily from d 1–5. Treatment with PBS or OXM or Ex-4 (twice daily) commenced 4 d before and throughout STZ administration. B, One cohort of mice was killed at d 6, 24 h after the last injection of STZ, for analysis of histology and histochemical detection of insulin and cleaved caspase-3 (magnification, ×400). C, Caspase-3 positivity within insulin-positive cells was quantified and corrected for total islet area (square millimeters) using an optimized pixel-counting algorithm together with Aperio Imagescope software. Approximately 90 islets per mouse were analyzed. n = 7–8 mice. *, P < 0.05; **, P < 0.01 vs. PBS-STZ mice. In a second experiment (D–G), mice were treated with PBS or OXM at doses indicated above, and peptide administration was continued for an additional 4 d after the final STZ injection and random fed blood glucose levels were measured (D) until d 40. Blood levels of HbA1c were measured (F) and pancreata procured for measurement of insulin content (G). n = 4–12. *, P < 0.05; **, P < 0.01. AUC, Area under the curve.
ultrum stress and apoptosis in INS-1 cells (31, 32) caused a 6.5-fold increase in levels of cytoplasmic nucleosomes after 6 h (Fig. 4). In contrast, the levels of nucleosomes were markedly reduced by OXM and Ex-4 by 85 and 80%, respectively. Furthermore, Ex-9 reversed the protective effect of OXM in Tg-treated INS-1 cells, suggesting that OXM protects β-cells via a GLP-1R-dependent mechanism.

Gastric emptying and feeding studies

The results of the above studies demonstrate that OXM mimics some but not all of the glucoregulatory actions ascribed to GLP-1R agonists. Because OGTT (Fig. 1C) demonstrated that OXM, unlike Ex-4, significantly increased plasma insulin after oral glucose challenge, we hypothesized that OXM exerted reduced effects on gastric emptying relative to the known inhibitory effects on gastric emptying demonstrated for GLP-1R agonists such as Ex-4. Gastric emptying in wild-type mice was measured using two techniques. In Fig. 5A, gastric emptying was calculated as the mass of wet stomach contents relative to the mass of food ingested in the presence of vehicle, OXM, or Ex-4. Although 3 μg Ex-4 potently inhibited gastric emptying rate, OXM used at doses up to 250 μg had no detectable effect on gastric emptying. Similarly, Ex-4, but not OXM, inhibited gastric emptying as assessed using the paracetamol absorption test (Fig. 5B) despite data illustrating that Ex-4 and OXM were both potent agonists at the GLP-1R in vitro (supplemental Fig. 1, published as supplemental data on The Endocrine Society’s Journals Online web site at http://endo.endojournals.org). Because GLP-1R-dependent regulation of both gastric emptying and food intake is thought to require engagement of peripheral and central neural circuits, we next assessed the effects of acute ip administration of Ex-4 or OXM on food intake. Both OXM and Ex-4 significantly inhibited food intake (Fig. 5C), although the anorectic actions of Ex-4 were detectable for a more prolonged time period relative to the effects of OXM. Taken together, these observations reveal that OXM exhibits many but not all of the actions of GLP-1R agonists in mice in vivo.

Discussion

The concept that two distinct structurally related peptides modulate overlapping biological actions through a shared common receptor is not without precedent. For example, PTH and PTHrP compete for binding at the PTH receptor, and both proteins regulate bone resorption and calcium excretion (33). Similarly, although epidermal growth factor and TGF-α are encoded by distinct genes, both proteins are potent ligands for the epidermal growth factor receptor (34). Even more complexity is evident upon scrutiny of the mela-
nocortin system, where peptides encoded by different genes, agouti and agouti-related peptide, compete with α-MSH for binding to melanocortin receptors (35). Much less common is the biological paradigm exemplified by OXM and GLP-1 wherein two peptides, derived from the same gene, are competitive ligands for a single common (GLP-1) receptor. Although it remains possible that OXM actions are modified by a separate as yet unidentified receptor or signaling protein, our data obtained using wild-type and receptor knockout mice convincingly demonstrate that the anorectic (18) and glucoregulatory actions of OXM require a functional GLP-1R.

Although multiple L cell-derived peptides secreted from the distal gut modulate food ingestion, the anorectic actions of PYY, GLP-1, and GLP-1R agonists such as Ex-4 have received the most attention due to their efficacy in human subjects. Both GLP-1 and Ex-4 bind to the central nervous system GLP-1R (36) and gain access to the central nervous system after peripheral administration (37). The inhibitory effects of GLP-1R agonists on feeding in mice requires a single GLP-1R (38) and likely involves direct and indirect regulation of satiety centers, inhibition of gastric emptying, and modulation of aversive signaling pathways (38–41). Indeed, repeated or continuous peripheral administration of GLP-1 or GLP-1R agonists such as Ex-4 or liraglutide to human subjects produces significant weight loss in clinical studies (42, 43). In contrast, there is much less information available about the chronic effects of OXM administration. However, a 4-wk trial of repeated OXM administration reduced food intake and body weight in association with increased energy expenditure in human subjects (19).

Although OXM inhibits food intake in fasted or fed rats (15–17), as well as in human subjects (19, 44), a separate receptor for OXM has not yet been identified. Hence, the precise receptor and signaling pathways transducing the anorectic and glucoregulatory actions of OXM remain uncertain. Our data clearly show that although OXM increases the levels of cAMP in BHK cells through either the GLP-1 or glucagon receptors (18), the glucoregulatory actions of OXM are mediated through a GLP-1R-dependent pathway.

An unexpected finding in our studies is the observation that OXM failed to inhibit gastric emptying in vivo. The GLP-1R-dependent control of gastric emptying likely involves neural regulation of gut motility and possibly direct interaction with gastric GLP-1Rs (45, 46). Moreover, the failure of OXM to inhibit gastric emptying in mice is even more surprising in that OXM is a partial glucagon receptor antagonist, and glucagon has been previously shown to inhibit gastric emptying in normal human subjects. In contrast to the lack of OXM action on gastric emptying in mice, administration of OXM to normal human subjects reduced basal and postprandial acid secretion and reduced the rate of gastric emptying together with a reduction in postprandial gut motility (47). Taken together, these divergent findings suggest that the actions of OXM are complex and may reflect species-specific interactions with one or more incompletely characterized OXM receptors.

Although OXM is capable of activating the glucagon receptor in vitro, our previous studies using Glp1r−/− mice clearly established that the anorectic effects of OXM require a functional GLP-1R in vivo (18). Furthermore, our current data demonstrate that OXM fails to lower glucose in Glp1r−/− mice, consistent with an essential role for the GLP-1R in transducing the glucoregulatory actions of OXM in vivo. In contrast, although both OXM and GLP-1R agonists acutely increase heart rate and blood pressure in rodents in vivo (48–51), the chronotropic actions of GLP-1R require a functional GLP-1R (49, 52), whereas the ability of OXM to increase heart rate in mice occurs independently of the known GLP-1R (53). Furthermore, injection of GLP-1 or OXM produces differential patterns of neuronal activation in fasted mice in vivo (54), and OXM exerts differential activation of GLP-1R-dependent signal transduction in comparison with native GLP-1 in vitro (55). Taken together, our data demonstrate that OXM exhibits a partial spectrum of GLP-1R-dependent glucoregulatory actions in vivo, yet in contrast to the known effects of GLP-1R agonists on control of gut motility, OXM at the high doses used in our studies fails to inhibit gastric emptying in mice. These findings further refine our understanding of the GLP-1-like actions of OXM and emphasize the importance of understanding the mechanisms through which OXM exerts its glucoregulatory actions in vivo.

Acknowledgments

We thank Xiemin Cao for technical assistance and George Bikoupolous for valued advice with in vitro experiments.

Received March 10, 2008. Accepted July 21, 2008.

Address all correspondence and requests for reprints to: Dr. Daniel J. Drucker, Mt. Sinai Hospital, Samuel Lunenfeld Research Institute, 60 Murray Street, Toronto, Ontario, Canada M5G 1X5. E-mail: d.drucker@utoronto.ca.

A.M. was supported in part by a Canadian Institutes of Health Research Doctoral Research Award and by a Canadian Diabetes Association Doctoral Research Award. These studies were supported in part by a grant from the Canadian Institutes for Health Research (MOP-10805) and the Juvenile Diabetes Research Foundation (1-2006-796) to D.J.D. D.J.D. is supported by a Canada Research Chair in Regulatory Peptides.

Disclosure Statement: A.M., J.A.L., and L.L.B. have no duality of interest. D.J.D. has no duality of interest in relation to the work described in this manuscript. Full disclosure of other relationships can be found at http://www.glucagon.com/Drucker%20lab.htm.

References

25. Potts JT, Gardella TJ 2007 Progress, paradox, and potential: parahypothalamic hormone research over the last 20 years. Ann NY Acad Sci 1117:199–208

29. Kastin AJ, Akerstrom V 2003 Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord 27:313–318

44. Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungnue IN, Parker TG, Huang Q, Drucker DJ, Husain M 2003 Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 144:2242–2252

Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.
Supplementary Figure 1

![Graph showing relationship between peptide concentration and CAMP production](image-url)